American Eagle Outfitters: Quantum III

Sam Jannotti

Structural Option The Pennsylvania StateUniversity M Kevin Parfitt

American Eagle Outfitters

QUANTUM III: SOUTHSIDE WORKS

PITTSBURGH, PA

The Project Team

Owner: American Eagle Outfitters Architect: The Design Alliance Architects Construction Manager/Developer: The Soffer Organization Structural Engineer: Atlantic Engineering Services MEP Engineer: Tower Engineering Civil: The Gateway Engineers, Inc. Landscape: Environmental Planning and Design

Structure

Wide flange columns, beams, and girders with composite lightweight concrete on steel deck

Typical bays are 30' on an open plan

- Bathrooms, mechanical spaces, and elevators/egress located in center of plan, also housing two vertical trusses to counteract lateral loads
- 60 ton auger cast piles and 3000 psi spread foundations

Architecture

- Transparency through curtain walls, mass shown through brick facade
- Composite aluminum panels and cornice unify building facades

Open plan for future tenant fit-out

Single vertical truss fully visible through curtain wall, demonstrating building structure

Building Statistics

Location: 19 Hot Metal Street, Pittsburgh, PA Occupancy: Office Size: 5 stories and 150,000 sq. ft. Construction Dates: May 2007-October 2008 Cost: \$16 million Building Shell and Core Delivery Method: Design-Bid-Build

Lighting and Electrical

- 277/480 V, 3 phase, 4 wire system dropped down to a 208/120 V system
- Transformers present at each level in panel room At least two panels for each voltage level on each
- floor Only lighting included in contract is emergency and egress fluorescent tubes, exit signs, and loading areas with metal halide mounted on walkways and in trees for aesthetic purposes Each floor lighting to be furnished by tenant

Mechanical

- Two air handling units providing 120,000 CFM total
- 30% or 36,000 CFM outside air
- Heat recovery/enthalpy wheels operate at 64% efficiency for cooling and 77% efficiency for heating

SAMUEL M. P. JANNOTTI STRUCTURAL http://www.engr.psu.edu/ae/thesis/portfolios/2008/smj167/

Sam Jannotti

American Eagle Outfitters Quantum III Pittsburgh, Pennsylvania

Acknowledgements

Completing this senior thesis could not have happened if it weren't for the help and patience given by all these family members, friends, design professionals, and firms:

To my family:

You taught me how to appreciate life and the people around me. Thank you for your continuing support and always keeping an open ear.

To my friends:

Thanks to Steve Reichwein for dealing with my one thousand questions per week, Jason Sambolt for his help with Trane TRACE 700 and mechanical design, and Gary Newman for making me step back and breathe once in a while. To the best time of our life, five years and counting!

Atlantic Engineering Services:	The Soffer Organization
Tim Jones	
Andy Verrengia	
John Schneider	Tower Engineering
Chris Kim	
American Eagle Outfitters	The Gateway Engineers, Inc.

The Design Alliance Architects

Environmental Planning and Design

Finally, To the AE Faculty: Kevin Parfitt Andres Lepage Ali Memari Robert Holland The entire AE Faculty and Staff

Table of Contents

Thesi	s Abstract	
Exec	utive Summary	1
Ackn	owledgements	2
Table	of Contents	3
List o	of Figures	5
1. Ir	itroduction	7
2. B	uilding Background	8
2.	1 General Information	8
2.	2 Architectural Overview and History	9
2.	3 Building Envelope Architecture	9
2.	4 Building Plan Architecture	10
2.	5 Zoning	10
2.	6 Structural Systems	10
2.	7 Mechanical System	11
2.	8 Construction and Management	11
2.	9 Electrical Systems	11
2	10 Lighting Systems	11
2.	11 Fire Protection	12
2.	12 Transportation	12
2.	13 Communications	12
2	14 Project Team	13
3. Structu	ıral Redesign	14
3.	1 Existing Structural Systems	14
	3.1.1 Geotechnical and Foundation Concerns	14
	3.1.2 Floor Framing	15
	3.1.3 Gravity System Columns	17
	3.1.4 Lateral Load Resisting Elements	17
	3.1.5 3-D Model Images	20
3.	2 Codes and Material Properties	21
	3.2.1 Codes and Referenced Standards	21
	3.2.2 Material Properties	21
3.	3 Existing System Loads and Criteria	22
	3.3.1 Load Cases and Combinations	22
	3.3.2 Dead Loads	23
	3.3.3 Wall Loads	23
	3.3.4 Live Loads	24
	3.3.5 Existing Building Wind Criteria	25
	3.3.6 Existing Building Seismic Criteria	25
3.	4 Basis for Structural Redesign	26
	3.4.1 Gravity System	26
	3.4.2 Lateral Force Resisting Elements	27
	3.4.3 Design Goals and Scope	27
	=	

Sam Jannotti

3.5 Proposed Gravity System 2	8
3.5.1 Gravity Framing 2	8
3.5.2 Gravity Frame Detailing 2	8
3.6 Proposed Lateral Frame Design 2	9
3.6.1 New Wind Criteria	9
3.6.2 Wind Design Methodology 2	9
3.6.3 Wind Story Shears and Overturning Moments 3	0
3.6.4 Wind Induced Story Drift 3	2
3.6.5 New Seismic Criteria 3	2
3.6.6 Additional Lateral Frames 3	3
3.6.6.1 Vertical Truss Elevations 3	4
3.6.7 Seismic Design 3	5
3.6.7.1 Seismic Story Shears 3	5
3.6.7.2 Design A 3	6
3.6.7.3 Design B 3	7
3.6.7.4 Continuing Design 4	0
3.6.7.5 Redundancy and Irregularities 4	-1
3.7 Impact of Redesign 4	-1
3.8 Structural Conclusion 4	-1
4. Architectural Breadth 4	2
4.1 Existing Building Architecture and Proposed Changes 4	2
4.2 Possible Frame Locations 4	-5
4.3 Final Frame Layout 4	-5
4.4 Shell Redesign 4	-6
4.4.1 Oakland Architecture 4	-6
4.4.2 Facade Assemblies 4	7
4.4.3 Facade Redesign 4	-8
5. Mechanical Breadth 4	9
5.1 Design Goals 4	9
5.2 Existing System 4	9
5.3 New Shell Assemblies 5	0
5.4 Oakland Climatic Data 5	51
5.5 Results 5	51
5.6 Mechanical Breadth Conclusions 5	5
6. Conclusion 5	6
Appendix A – Gravity Loads 55	57
A 1 Dead Loads 5	7
A 2 Live Loads	, 60
Appendix B – Lateral Loads	51
B 1 Wind Loads	51
B.2 Seismic Loads	59
Appendix C – Architectural Supplements	7
Appendix D – Mechanical Breadth	0
Bibliography 9	1

List of Figures

Figure 1 – Location of AEO: QIII	8
Figure 2 – View of South Side Works	9
Figure 3 – North Perspective with Branding Wall	9
Figure 4 – Ongoing QIII Construction by Monongahela River	14
Figure 5 – Typical Architectural Floor Plan	15
Figure 6 – Typical Floor System Construction	15
Figure 7 – Typical Bay	16
Figure 8 – Typical Floor Framing	16
Figure 9 – Vertical Truss Locations	17
Figure 10 – Vertical Trusses A, B and C (VT-A, B, C)	18
Figure 11 – Brace Connection Detail	18
Figure 12 – Vertical Trusses D and E (VT-D, E)	19
Figure 13 – 3D View from West Building Corner	20
Figure 14 – 3D View from East Building Corner	20
Figure 15 – Dead Loads	23
Figure 16 – Mechanical Unit Surface Loads	23
Figure 17 – Gravity Member Comparison	28
Figure 18 – Wind Analysis Methodology	29
Figure 19 – North-South Wind Shears and Overturning Moments	30
Figure 20 – East West Wind Shears and Overturning Moments	31
Figure 21 – Existing and Potential New Vertical Truss Locations	33
Figure 22 – Proposed Truss Elevations	34
Figure 23 – West Elevation and NT-B and D	34
Figure 24 – Seismic Base Shears	35
Figure 25 – Seismic Base Shear Comparison	36
Figure 26 – Design B Frame Locations	37
Figure 27 – Design B VT-B and D Elevation	37
Figure 28 – Design B Methodology	38
Figure 29 – Stress Ratio Key	<u>39</u>
Figure 30 – NT-B and NT-D Elevation	<u>39</u>
Figure 31 – Vertical Truss Elevations Under Controlling Loads	40
Figure 32 – North QIII Façade	42
Figure 33 – Existing and New Truss Locations	43
Figure 34 – North Elevation and NT-A	44
Figure 35- East Elevation and NT-E	44
Figure 36 - West Elevation and VT-B and D	<u>45</u>
Figure 37 – Final Frame Layout	45
Figure 38 – North Building Elevation for Existing and New Quantum III	46
Figure 39 – Mixed Climate Wall Assembly (Architects, 2007)	47
Figure 40 – North Façade Rendering	48
Figure 41 – Window Transmitting Properties (Architects, 2007)	50
Figure 42 – Window Assembly U-Factors	50

Figure 43 – TRACE Existing Cooling Coil Results	51
Figure 44 – TRACE Existing Heating Coil Results	52
Figure 45 – TRACE New Cooling Coil Results	53
Figure 46 – TRACE Heating Coil Results	54
Figure 47 – Dead Loads	57
Figure 48 – Mechanical Unit Surface Loads	57
Figure 49 – Roof Composite Roof Deck	58
Figure 50 – Typical Floor Composite Deck	59
Figure 51 – Roof Composite Deck (United Steel Deck, 2003)	60
Figure 52 – Wind Input	61
Figure 53 – Wind Pressure Coefficients	62
Figure 54 – Wind q Factor Calculation	63
Figure 55 – MWFRS Design Pressures	64
Figure 56 – MWFRS Design Pressures	65
Figure 57 – Wind Forces and Overturning Moments - E-W Wind	66
Figure 58 – Wind Forces and Overturning Moments – N-S Wind	67
Figure 59 – Wind Story Drift	68
Figure 60 – Seismic Design Methodology	74
Figure 61 – RAM Building Weights (1)	74
Figure 62 – Building Masses (1)	75
Figure 63 – Seismic Base Shear (2)	75
Figure 64 – Seismic Base Shear Comparison (2)	76
Figure 65 – Preliminary Frame Relative Rigidities (3)	76
Figure 66 – Frame Preliminary Sizing (3-7)	78
Figure 67 – Actual Frame Deflection Data from ETABS (13)	79
Figure 68 – Frame Actual Relative Rigidities (13)	80
Figure 69 – Max Shear and Moment	81
Figure 70 – SCBF Design Spreadsheet - Input	81
Figure 71 – SCBF Inverted V Beam Design	83
Figure 72 – EBF Beam Input and Design	83
Figure 73 – EBF Link Design	84
Figure 74 – Seismic Drift	85
Figure 75 – Wind and Seismic Overturning Moments	86
Figure 76 – US Climate Zones	87
Figure 77 – US Rainfall Data	88
Figure 78 – Shell Design	89
Figure 79 – TRACE Results	93
Figure 80 – TRACE Results	94